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Abstract: Optical imaging offers exquisite sensitivity and resolution for assessing biological 
tissue in microscopy applications; however, for samples that are greater than a few hundred 
microns in thickness (such as whole tissue biopsies), spatial resolution is substantially limited 
by the effects of light scattering. To improve resolution, time- and angular-domain methods 
have been developed to reject detection of highly scattered light. This work utilizes a 
modified version of a commonly used Monte Carlo light propagation software package 
(MCML) to present the first comparison of time- and angular-domain improvements in spatial 
resolution with respect to varying sample thickness and optical properties (absorption and 
scattering). Specific comparisons were made at various tissue thicknesses (1-6 mm) assuming 
either typical (average) soft tissue scattering properties, μs’ = 10 cm−1, or low scattering 
properties, μs’ = 3.4 cm−1, as measured in lymph nodes. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Optical imaging is used extensively for assessing biological tissue specimens (biopsies) 
through tissue staining and microscopy of thin tissue slices taken from selected locations of 
the specimens. However, the time intensive nature of these procedures limits more complete 
assessment of specimen volumes. Lymph node biopsy, used to stage metastatic cancer in a 
number of tumor types, is one example of a clinical application that would benefit from 
imaging strategies capable of evaluating larger volumes of tissue, as clinically important 
micrometastases can be missed with current protocols [1]. Optical imaging with photons in 
the near-infrared window (600-1000 nm)—where the absorption is low and scattering 
dominates—offers the potential to carry out whole specimen analyses for < 1 mm diameter, 
low-scattering tissues [2], and for larger tissues if scattering can be accounted for [3–5]. Two 
of the more common methods of scatter rejection to improve resolution in imaging of 
scattering biological tissue include (1) time-domain imaging (also called early-photon 
imaging) [6–9], where pulsed light sources are used and images are reconstructed only from 
the photons that arrived earliest at the detector (having taken the most direct path through 
tissue); and (2) angular-domain imaging [10–12], where only the straightest photons exiting 
the tissue are collected (presumably limiting collection of photons that have deviated far from 
the most direct path through the tissue). 

In both approaches, there are a number of instrument design considerations that can affect 
level of scatter rejection (i.e., time resolution in time-domain applications and numerical 
aperture of the collection optics in angular-domain applications). Yet, while greater levels of 
rejection (smaller the time window or smaller the aperture) can theoretically provide better 
spatial resolution, there is a tradeoff in resolution and collected number of photons. As such, 
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the question of how to reject scattered photons and to what extent is complex and will depend 
on the conditions of the application (size and optical properties of the specimen). This work 
presents the development of a simulation tool to directly compare time- and angular-domain 
imaging at different levels of time- and angular- scatter rejection. Specific comparisons were 
made at various tissue thicknesses assuming either typical (average) soft tissue scattering 
properties (μs’ = 10 cm−1 [13]) or low scattering properties (lymph node: μs’ = 3.4 cm−1, 
measured in this work, see Section 2.4 & 3.1). Simulations were carried out with an 
augmented version of a commonly used Monte Carlo simulation subroutine, mcsub.c [14,15], 
which was optimized for GPU parallelization and modified such that the path and exit angles 
of the light that “hit” the designated detector was saved separately from the overall fluence 
map. This was critical for comparing time- and angular-domain resolution and contrast 
tradeoffs. The augmented Monte Carlo code is available to anyone upon a request. 

2. Method 

2.1 Monte Carlo simulation 

To compare potential resolution improvements using time- and angular-domain imaging in 
biological specimens (1-6 mm in diameter), the Monte Carlo (MC) subroutine, mcsub.c, 
developed and distributed by Jacques et. al [14,15] was augmented in a few ways. Briefly, 
mcsub.c was designed to mimic the light propagation in finite sized, turbid (scattering) media 
with homogeneous optical properties, assuming Fresnel reflection at tissue/air interfaces. The 
code requires inputs of the size of the medium (s), the absorption coefficient of the medium 
(μa), the scattering coefficient of the medium (μs), the anisotropy of scattering (g), the 
refractive index of the medium (n1), the refractive index of the external medium (n2), and 
characteristics of the incident light beam (e.g., light shape and position of illumination). 
Briefly, in MC simulation, photon “packets” (which are commonly called photons in MC 
literature) are launched at a location and in a direction and distribution matching the desired 
illumination setup. Each packet is made to travel a random distance (step) before scattering 
(changing direction). The distribution of random distances is linked to the probability of 
scattering (μs) and the distribution of random direction changes is linked to the anisotropy of 
the scattering (g). At the end of each step, the weight of the photon packet (which begins as 1) 
is adjusted, according to the absorption properties (μa). The process is then repeated until the 
photon packet leaves the medium, is detected, or reaches a selected lower limit of weight. The 
mcsub.c program then outputs a vector of escaping flux density versus radial position, ( )iJ r , 

and a matrix of fractional density map of incident light transported ( ),i kT r z , recorded on 

cylindrical coordinate system. In order to make mcsub.c amenable to compare time- and 
angular-domain imaging in “small” (mesoscopic) tissue samples, and improve execution time, 
the following adjustments were made: 

(1) Detector subroutine was added such that one can define a detector’s acceptance in 
space (size, location), time, and angle. (comparing time- vs. angular-domain). 

(2) The complete path of each photon package was retained through the “life” of the 
photon packet (until it exited the medium or reached a weight that would trigger a 
drop). If the photon packet was accepted by the detector (see (1)), the path of that 
photon packet was added to a separate detected fractional density map of incident 

light transported ( ), ,i j kD x y z , recorded on Cartesian coordinates. (comparing time- 

vs. angular-domain). 

(3) The incident Gaussian beam simulation was modified to propagate the beam as a 
solution of the paraxial Helmhotlz equation in the tissue until the first interaction 
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point, as described by Hokr et al [16]. (improving approximation of a Gaussian 
beam propagation in turbid medium). 

(4) A variance reduction technique defined by Kawrakow and Fippel [17] was employed 
to reduce the number of photon packets passing through the medium without having 
any interaction. Specifically, a factor DIV (0<DIV≤1) was introduced, where each 
photon package was then propagated a distance, Δs*DIV (where Δs is the standard 
step size derived by mcsub.c). Roulette was then used to determine if the photon 
packet was scattered. (improving execution time). 

(5) The code was optimized for parallelization on a GPU cluster. Specifically, a new 
random number generator [18] was used to avoid repeats of the same random seed 
numbers, when photons were initiated on different threads of the GPU at the same 
CPU clock time (used in the mcsub.c code as a randomizer for the random number 
generator). (improving execution time). 

2.2 Simulated phantom experiment 

The augmented Monte Carlo software was used to evaluate how the scatter rejection by time- 
and angular-domain restrictions can influence spatial resolution and contrast in transmission 
optical projection tomography (OPT) of average and low (lymph node) scattering coefficient 
tissues over a range of tissue thicknesses: 1-6 mm. Average soft tissue optical properties for 
780 nm wavelength light (absorption coefficient: μa = 0.2 cm−1, scattering coefficient: μs = 
100 cm−1, anisotropy factor: g = 0.9) were taken from Jacques [13], and lower scattering 
lymph node optical properties (μa = 0.3 cm−1, μs = 43 cm−1, g = 0.92) were estimated 
experimentally (Sections 2.4 & 3.1). For each optical property group and every thickness, 
four levels of angular-domain restriction were tested (numerical apertures (NA) of 0.124, 
0.059, 0.025, and 0.005), including all photon arrival times, and at NA = 0.124, three time-
domain restrictions (also called time gates) were tested (1, 0.3, and 0.1 ps). The illumination 
source was simulated as a Gaussian beam reaching its waist at the surface of the sample and 
having a full-width-half-maximum waist of 100 μm. The size of the source was selected to 
minimize the spot size while maintaining a non-divergent beam through the thickness of the 
samples (divergence increases with smaller spot sizes) [19]. Detector size (100 μm diameter, 
circular) was selected to match the size of the illumination point since the resolution will be 
dominated by the light source beam width. Source and detector were simulated to be directly 
opposite on either side of the scattering media. The tissue index of refraction was set to 1.4 
[13] and the surrounding was simulated as air. 

Under each imaging condition and assuming a small perturbation of the absorption (Fig. 
6(a)), the detected intensity at x-axis location, xm, and y-axis location, yn was estimated by: 

 ( ) ( ) ( )
0

, ,

, ,
, , , 1 ,  , ,

i j k

i m j n k
i j k a s

x y z
N m n N D x x y y z m n

δμ
μ μ

 
 = − − − ∀
 + 

  (1) 

where ( ), ,i j kD x y z  is the detected fractional density map of transported incident light 

obtained in Monte Carlo simulations defined on a 10 μm pixel grid over a 2d x 2d x d mm3 
uniform object area, with d denoting the object thickness, 0N  representing the number of 

launched photons per source-detector location, and δμ  representing the perturbation in the 

absorption coefficients of the scattering medium [20]. The δμ  perturbation map was defined 

as zero at all locations except for two, 200x200x200-μm3-square inclusions separated by 200 
μm in the central axial plane of the objects. The level of perturbation was assumed to be 0.1 × 
(μa + μs) - i.e., 10% of the attenuation coefficient for each case. To simulate tomographic data 
collection, 2D projections were calculated at 10 μm resolution over a d x d field of view with 
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600 fJ of photons detected per point, for 72 projections about the objects (assuming 
projections acquired every 5°). Poisson (shot) noise was added with the poissrnd() built-in 
function in MATLAB to each projection, and data were reconstructed in 3D by standard 
filtered backprojection using the iradon() built-in function in MATLAB. This setup would be 
representative of a spherical tissue object rotated in an optical property-matching solution. All 
tomographic data were presented as reconstructed 2D slices, perpendicular to the axis of 
rotation and at the center of mass of the inclusions. 

2.3 Analyzing spatial resolution 

To evaluate achievable resolution the object to background contrast was calculated as: 

 1 2

1 2

I I
contrast

I I

−
=

+
 (2) 

where, I1 and I2 were the mean intensities measured from 50x50 μm2 regions about the center 
of mass of one absorber (I1) and in the center of mass of the space between the absorbers (I2), 
in the reconstructed images. 

Mean squared error (MSE) between estimated and simulated values was measured to 
assess the accuracy of the reconstructed images as: 
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where   denotes 500x500 μm2 region containing inclusions; N is the number of pixels in this 

region; ( )0, ,i kx y zδμ  and ( )0, ,i kx y zδμ  are estimated and simulated values, respectively. 

Note that the mean background of each reconstructed image should be zero . To evaluate 
limits of the spatial resolution (independent of imaging time or laser power) both contrast and 
MSE were calculated using noise free projections. For a discussion about imaging time and 
ANSI safety limit on laser power see Section 3.2.1. 

2.4 Optical properties of lymph nodes 

Lymph node optical properties were estimated in two steps: 1) using a time-domain optical 
imaging system, diffusion approximation of the radiative transfer equation, and thick tissue 
samples to estimate aμ  and sμ′ ; 2) Beer-Lambert law and thin tissue sample to estimate g . 

1). Estimation of aμ  and sμ′ ; Thirty lymph nodes were surgically removed from the 

neck tissue of freshly slaughtered pigs provided by a local butcher. The nodes were 
packed into a 4x4-cm2 clear square glass container. On the same day, the lymph 
node filled container was placed in the imaging field of a time-domain optical 
imaging system [19]. Briefly, the system employed a 780 nm femtosecond pulsed 
laser (Mendocino, Calmar Laser, Palo Alto, CA) for illumination and a single photon 
avalanche diode detector (PDM, Micro Photon Devices, Italy) connected to a time 
correlated single photon counting module (HydraHarp, PicoQuant, Berlin, Germany) 
to measure the temporal point spread function of light arrival at a time resolution of 
4 ± 12 ps. The system was used to collect the transit time distribution of photons 
passing through the 4-cm-thick lymph node sample. At this thickness, it was 
assumed that the diffusion approximation of the radiative transfer equation was 
sufficient to model the collected time-domain signal [21]. Specifically, the following 
expression was used to estimate the average absorption coefficient, aμ , and reduced 
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scattering coefficient, sμ′ , of lymph nodes through least squares optimization using 

MATLAB (Mathworks, Natick, MA) code: 

 ( ) ( ) ( ) 23
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t t at vt
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μ μ
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 
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where φ(t) is the measured temporal point spread function of the laser after passing 
through the lymph node sample, φ0(t) is the measured instrument response function 
of the system, * represents the convolution operator, a is a scaling factor and fitting 
parameter, d is the thickness of the sample (4 cm), and v represents the speed of light 
in the medium (with an assumed index of refraction of 1.4 [13]). 

2). Estimation of g ; Lymph nodes were then frozen in TissueTek OCT Compound 

(Sakura Finetek, Torrance, CA) and cryostat sectioned in d = 100-µm thick slices. 
The samples were mounted using a wet cell geometry as developed by Hall et. al 
[22] to prevent dehydration of the tissues. Briefly, samples were placed on 1-mm-
thick glass slides with phosphate buffered saline above and below the tissue, and 
topped with a coverslip. The slide was sealed using Vaseline. Thin tissue slices 
permitted the condition of single scattering, and thus, use of the Beer-Lambert law to 
model transmission: 

 ( )0 exp ,tP P dμ= −  (5) 

where P is the measured transmitted power after passing through the lymph node 
sample, P0 is the measured incident power, d is the tissue thickness, and µt is the 
total attenuation coefficient comprised of the absorption and scattering coefficients 
(µt = µa + µs). Each tissue section was illuminated with the 780 nm femtosecond 
laser in two spots – one in the center of the sample and the other on the edge to 
account for variability in the biological structure of lymph nodes and corresponding 
optical properties [23]. Incident and transmitted power were measured with a 
photodiode power sensor (S120C, Thorlabs, Newton, NJ). The scattering anisotropy 
factor was calculated using g = 1 – µs’/µs. 

To verify the methods described above, the procedure was carried out on optical tissue-
mimicking phantoms (Biomimic, INO, Quebec, Canada) where optical properties were 
known (µa = 0.05 cm−1, µs’ = 10 cm−1, g = 0.62, n = 1.51). The thick tissue diffuse 
approximation experiment was conducted with a 3x3x4.8 cm3 block of the phantom, while 
the thin tissue attenuation experiment was done on a 3x3x0.4 cm3 slab. 

3. Results and discussion 

3.1 Lymph node optical property estimation 

The absorption and reduced scattering coefficients were obtained from fitting measured 
temporal pulse spread functions with the diffusion approximation to the radiative transfer 
equation [Eq. (4)]. The estimated optical property values were µa = 0.30 cm−1 and µs’ = 3.37 
cm−1. To further characterize the lymph nodes, transmittance measurements were acquired 
from thin tissue samples, and Eq. (5) was used to calculate µt and subsequently obtain µs so 
that the anisotropy factor could be attained. The average attenuation coefficients were µt = 
46.4 ± 17.2 cm−1 and µt = 40.3 ± 19.6 cm−1 at the edge and center of the lymph node sections 
respectively. Higher values at the edge compared to the bulk are consistent with findings from 
an in-depth analysis of local attenuation coefficient in human lymph nodes conducted by 
Scolaro et al. [23]. It is expected that regions of fibrous stroma from the capsule (periphery of 
the node) have higher attenuation, while the paracortex and medullary sinuses (bulk of the 
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node) will have lower attenuation; and the obtained results follow this trend. The above 
values are also comparable to the coefficients presented in the literature, which were found to 
be in the range 45 – 153 cm−1 at 1320 nm using optical coherence tomography [23]. Note: 
lymph nodes primarily consist of lymph fluid, fibrous tissue, and fatty tissue, which all have 
scattering coefficient values that are relatively constant between 780 and 1320 nm [13]. 
Furthermore, Scolaro et al. assumed negligible absorption coefficient, yet water is 4 orders-
of-magnitude more absorbing at 1320 nm compared to 780 nm, which could have yielded 
slight overestimates in lymph node scattering coefficient estimates at 1320 nm. A mean of µt 
= 43.3 cm−1 was used for calculations and provided a resultant anisotropy factor of 0.92—
again consistent with other values of g in the literature for biological soft tissue [13]. 

The optical properties of a phantom with known absorption coefficient, reduced scattering 
coefficient, and anisotropy factor were characterized to confirm the validity of the 
experimental methods. The obtained values were µa = 0.055 cm−1, µs’ = 9.377 cm−1 and g = 
0.636, providing an error of 10%, 6.2%, and 2.6% for the absorption coefficient, reduced 
scattering coefficient and anisotropy factor, respectively (target values: µa = 0.05 cm−1, µs’ = 
10 cm−1 and g = 0.62—provided from the manufacturer). These coefficient values fall within 
the expected margin of error that results from a time resolved transmittance characterization 
method (11.3% for absorption coefficient and 6.8% for reduced scattering coefficient [24]). 
Although the expected error for g is not reported, the obtained result is in good agreement 
with the target value, and within 2.6% of the expected value (g = 0.62 ± 0.015). Based on 
these findings, the validity of the aforementioned techniques to characterize optical properties 
was confirmed, and the estimated lymph node optical properties could then be applied to 
simulation studies with confidence. 

3.2 Simulated phantom results 

First, in Fig. 1, the detected fractional density map of transported incident light recorded on a 
cylindrical coordinate system, normalized to maximum of one, is reported for the studied 
range of time- and angular-domain restriction for the low-scattering tissue (i.e., lymph node 
like) and thicknesses of 3-6 mm. In general, angular-domain restriction provided the highest 
improvement in potential spatial resolution as one can determine from the density map profile 
at the half thickness of the object, relative to the object thickness, with improvements over no 
restriction diminishing with increasing object thickness. On the other hand, time-domain 
restriction tended to provide greater improvements in potential spatial resolution for thicker 
samples. Though results are not provided in Fig. 1, if one would increase scattering 
properties, µs, or lower scattering anisotropy, g, similar trend can be observed as with 
increased sample thickness. 
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Fig. 1. Detected photons’ transported density maps determined by Monte Carlo simulation 
plotted as a function of axial distance (z-axis; along the direction of the illumination vector) 
and the radial distance (x-axis; perpendicular to the direction of the illumination vector). This 
figure provides a subset of results for the low scattering tissue (similar to lymph node tissue; μa 
= 0.3 cm−1, μs = 43 cm−1, g = 0.92), for object thickness between 3 and 6 mm, angular-
restriction between NA = 0.005-0.124, and time-domain restriction for 0.1-1 ps. All 
simulations were based on a 100-μm FWHM Gaussian light source incident on the object at its 
waist and a 100-μm diameter detector. 

3.2.1 ANSI safety limits 

One limitation to scatter rejection approaches that requires consideration is the potential for 
loss of signal-to-noise ratio as restrictions become more substantial. Based on the light source 
and detector sizes simulated in this work, the amount of energy that would be needed to 
detected 600 fJ of light energy, i.e. ~2.4 × 106 photons at 780 nm, (necessary to clearly see 
10% perturbations in optical properties for the most restrictive OPT case evaluated in this 
work: 0.005 NA angular restriction at 6 mm diameter lymph node object- see Fig. 3) at the 
detector for different lymph node-like tissue thicknesses is presented in Fig. 2. Assuming a 
dwell time of 1 ms (< 15 min tomographic imaging at 5x5 mm fields-of-view at 50 μm steps 
about 72 projections), the laser power required to achieve 600 fJ at the detector in the most 
restrictive case evaluated (angular restriction of NA = 0.005) and at the thickest distance 
evaluated (6 mm) would be 60 mW. When this power is focused to a 100-μm diameter spot, 
using for an example a 10 MHz pulsed laser, the energy deposited per pulse would be less 
than 0.1 mJ/cm2, 2 orders-of-magnitude below the ANSI skin safety limit for a single pulsed 
near-infrared laser (30 mJ/cm2) [25]. While repeated pulsing as required in the proposed setup 
can amplify the potential for tissue damage, it should be noted that in an experiment 
evaluating cellular reproduction of exposed living hamster embryos over 24 h of exposure at 
8 orders-of-magnitude higher light power density [26] did not produce appreciable effects. It 
should be noted, that for angular restriction applications, there is no need to use a single pixel 
detector, but rather a CCD camera could be used for detection, allowing imaging times to 
reduce significantly (unpublished results). Even for time-domain applications, optical gating 
allows the use of CCD detectors to acquire many projection simultaneously [27], and there is 
work to advance time-correlated single-photon counting SPAD arrays [28]. 
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protocols to enhance cancer cell contrast through targeted fluorescent of other optical imaging 
agents, and the long term ability to detect micrometastases in excised human nodes will 
require task-based evaluation metrics to demonstrate improved sensitivity and specificity over 
existing clinical protocols. 

Laminar optical tomography (LOT) [35] and mesoscopic fluorescence molecular 
tomography (MFMT) are competing imaging strategies to the mesoscopic OPT methods 
explored in this work, permitting 3D visualization of biological tissues at depths of 2-3 mm 
with high resolution (~100-200 µm). Their application has been demonstrated for in vivo 
studies of tumor [36,37] and brain activity [38] in mice, and evaluation of engineered tissues 
[39,40]. These imaging methods have the advantage of being capable of imaging the top 
surfaces of much thicker tissues compared to transmission OPT. The advantage of OPT, 
demonstrated in this paper, is that it is possible to achieve similar spatial resolution by simple 
filtered backprojection imaging reconstruction; hence, it is not necessary to utilize model-
based reconstructions that can be timely, particularly for LOT/MFMT, which usually employs 
modeling of photon propagation via Monte Carlo simulation (yet it should be noted that data 
reduction techniques are being explored to account for the computational expense in solving 
the inverse problem [41]). 

A broader impact of this work is the development and dissemination of a Monte Carlo 
software optimized for mesoscopic imaging. The nuances demonstrated in the work between 
optical properties and methods of scatter rejection with respect to their effects on spatial 
resolution in mesoscopic optical imaging reinforce the complexity of optical imaging in this 
regime. They also highlight the critical role that an accurate, fast, and informative photon 
propagation simulator can play in further developing and optimizing the future of mesoscopic 
optical imaging systems. The software utilized and provided by this work offers such ability, 
as an augmented version of the Monte Carlo subroutine employed by the “MCML” software 
widely used for visible and near-visible photon propagation modeling in scattering biological 
tissues [42]. Specifically, the code was (1) optimized for GPU-parallelization, (2) amended to 
allow the paths of photons arriving at a detector within definable time windows and/or at 
definable angles of incidence to be separated from the paths of all other photons, and (3) 
amended to allow modeling of coherent propagation of a Gaussian light source prior to the 
first interaction point. While neither GPU parallelization of MCML [43], addition of time and 
angular constraints [11], nor Gaussian propagation [16] in photon propagation are on their 
own new, the presented code is the first code to combine all of these optimizations, providing 
unique capability to accurately compare time- and angular-domain systems, which 
encompasses the immediate future of advances in optical projection tomography in the 
mesoscopic range. 
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